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ABSTRACT 
 

This study used a mathematical model to explore the accuracy of extrapolating multi-point blower door test results 
down to lower pressures at which building infiltration usually occurs naturally.  The mathematical model was applied 
to leaks of five different widths.  The leakage of the five different widths was then combined in different distributions 
to simulate total building leakage.  The calculated total building leakage was then compared to an extrapolation from 
the test pressures using a power law curve fit.   The results showed that depending on the distribution of the leaks from 
widest to narrowest, extrapolation of the power law fit may significantly over-estimate or under-estimate the building 
leakage.  At a building pressure of 1 Pa, one simulation the power law fit under-estimated the leakage by 19%, while 
another over-estimated the leakage by 78%.  At pressures below 1Pa, the deviations were even larger. 
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1. INTRODUCTION 
 

Since the earliest days of blower door tests in the 1970’s, multi-point tests have been commonly 
used to characterize building leakage over a range of test pressures.  Soon thereafter, a power law 
fit (Qv = C*Δpn) of the pressure vs. flow rate points was employed to estimate the leakage at 
pressures other than those tested.  Such a fit is useful since it allows an estimate of the leakage 
behavior by extrapolating from test pressures, which are usually 15 – 100 Pa, to pressures that are 
most common under natural leakage conditions, about 0 – 20 Pa. 
 
However, the accuracy of such extrapolations is not well understood.  Accuracy is important 
because one of the primary motivations for air tightness testing is provide data for energy loss 
models of buildings.  Since buildings lose energy from air infiltration and exfiltration due to the 
pressure difference created by wind and the stack effect, the test data from higher pressures must 
be extrapolated to the lower pressures at which air infiltration and exfiltration occur naturally. 
 



 
 

It should be acknowledged that in addition to the extrapolation of the power law fit, there are other 
known problems in estimating natural infiltration.  The distribution of leaks vertically in the 
building and the distribution of pressure differences due to wind are two other important sources 
of error in estimating natural building infiltration.  This paper will only discuss errors due to the 
extrapolation of the power law fit. 
 

2. METHOD 
 

The Darcy-Weisbach equation is used due to its simplicity and because it characterizes the 
pressure vs. flow behavior in both the laminar and turbulent flow regimes, which are known to 
exist in building leakage.  The Darcy-Weisbach equation was developed for cylindrical pipes, and 
may not be regarded as applicable to long, narrow cracks with corners like those found in a leaky 
building.  However, in this study, it will be shown that the model does not need to predict the 
magnitude of the leakage, but only how it changes with pressure and Reynolds number.  For this 
purpose, the Darcy-Weisbach equation and the Darcy friction factor are useful and instructive. 

The leakage model consists of cracks with five different widths: 16, 7, 5, 2.2, and 1.6 mm, where 
width is defined as shown in Figure 1.  What is most important about the choice of these 
dimensions is the flow regime that will occur under conditions of test pressures and conditions of 
natural infiltration.  For long, thin cracks the flow regime (laminar or turbulent) is determined by 
this width, and to a lesser degree the roughness of the building materials.  In the case of the largest 
width, 16mm, flow is turbulent at all pressures where testing would occur (above about 3 Pa) and 
is approximately the largest width of a crack that can be expected to frequently occur in residential 
construction.  With the smallest width, 1.6 mm, flow is laminar at all pressures of interest, up to 
100 Pa.  So this smallest leak can represent all leaks 1.6mm or smaller, since they will all remain 
laminar at all pressures of interest. 



 

 

 

The flow through each of the cracks is modeled over a range of 0.1 Pa to 100 Pa using the Darcy-
Weisbach equation and Darcy friction factor.  Most of the cracks change from laminar flow at low 
pressure differences through transitional flow and into the turbulent flow regime at higher pressure 
differences.  Next, an arbitrary number of leaks (or leakage area) may be assigned to each of the 
five characteristic lengths, such that a total volume of air leakage is divided up into the five 
characteristic lengths.  Finally, the sum of all leaks is computed at each pressure difference to 
calculate the total building leakage. 

This approach allows the comparison of buildings with similar total leakage due to a smaller 
number of larger sized leaks, or a larger number of smaller sized leaks.  By distributing the leaks 
carefully, one can even create two very different leakage distributions that result in exactly the 
same power law fit. 

2.1 Five Leak Sizes 
Initially, each of the five leaks is assumed to have an equal cross sectional area of 2500 mm2, but 
each one has a different length to width aspect ratio, ranging from 10:1 to 1000:1.  The widest leak 
is 16 x 158 mm, and the narrowest leak is 1.6 x 1580 mm.  Each leak is assumed to be 100 mm in 
depth, where depth is the distance the air travels through the thickness of the wall (see figure 1).  
However, this depth has no impact on the results, since the total pressure loss is proportional to 
this depth and each leak will be multiplied by an arbitrary area.  Again, this investigation is 

 

Figure 1: Leak Dimensions 



 
 

interested in relative differences of one leak width to another as they change over a range of 
pressures. 

The roughness of all leaks is required to calculate a Darcy Friction Factor in the turbulent region.  
The roughness, ε, of the three wider leaks was assumed to be 0.25 mm.  The 0.25 mm value is 
given from several sources as the roughness of cast concrete pipe, and was assumed to be similar 
to many building materials.  The two narrowest leaks were assumed to be smoother at 0.135 mm 
and 0.111 mm. 

2.2 Darcy Friction Factor 
Using the roughness values above, the Darcy Friction Factor was calculated over the range of 
Reynolds Numbers of interest.  The width, as previously defined, is the characteristic linear 
dimension used in the calculation of Reynold number.  In the laminar flow region for Re < 2300, 
the Darcy friction factor is known to be equal to 64/Re.  In the turbulent flow region, Re > 4000, 
the friction factor becomes dependent on both relative roughness and Reynolds number, and 
eventually becomes nearly constant at high Reynolds numbers.  A numerical approximation called 
‘Serghides's solution’ is used to calculate the turbulent friction factor.  

In the transition flow region, 2300 > Re > 4000 the flow is unsteady; it varies grossly with time 
and space within the flowing fluid.  For simplicity, the friction factor has been modeled as a 
straight line connecting the friction factor from the laminar to the turbulent flow regime.  In 
reality, there is considerable uncertainty in this Reynolds number range and it is indicated by the 
shaded region of Figures 2 and 3. 
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2.3 Flow vs. Pressure Difference 
Once we have friction factors, the air velocity through each leak size can be calculated using the 
Darcy-Weisbach Equation, shown here solved for velocity. 

 

 𝑣 =  √
2 ∗ 𝐷ℎ ∗ ∆𝑝

𝜌 ∗  𝑓𝐷 ∗ 𝐿
       (1) 

Where: 

v  = the average velocity of air through the leak 

Dh = the hydraulic diameter of the leak 

Δp = the pressure difference inside to outside the building 

ρ = the density of air 

fD = the Darcy friction factor 

L = the depth of the leak (as shown in Figure 1) 

Since the Darcy friction factor depends on the Reynolds number, which depends on the velocity, 
the solution is iterative.  Once the average air velocity through each leak is calculated, the 
volumetric flow rate is obtained by multiplying velocity by the cross-sectional area of the leak. 

Figure 3 shows the relationship between the pressure difference and the volumetric flow through a 
leak.  The 7mm leak was chosen since it passes through all three flow regimes between 1 and 100 
Pa pressure difference.  Notice that in the laminar region where flow rate is proportional to 
pressure (n=1), the slope is the steepest, and in the turbulent region the slope is flatter where 
(n=0.5).  The figure also shows the range of pressures at which blower door tests are usually run 
(between 15 and 100 Pa), and the pressures at which natural infiltration usually occurs (under 20 
Pa). 



 
 

 

 

Figure 4 shows the leak rate vs. pressure difference behavior for all the leak sizes modeled.  
Notice that in some cases a narrower leak may have the same or more flow than a wider leak. 
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2.4 Combining Individual Leaks into Total Leakage 
Once the pressure difference vs. leakage behavior is characterized, multiple sizes of leaks can be 
combined into a total.  Originally, all the leaks were normalized to an open area of 2500 mm2.  
Now we replace these areas with new areas that are somewhat arbitrary.  The objective is to 
iteratively adjust these areas until the calculated leakage results are similar to what we find by 
field testing buildings. 

This adjustment of leakage areas is the reason why our model does not need to accurately predict 
the magnitude of leakage for the various leak sizes, but only their relationship to each other and 
how they change over the pressure range.  In this study, we are interested in understanding how 
the sum of many individual building leaks of various sizes changes with pressure, particularly at 
lower pressures.  The pattern of flow as it changes from laminar to turbulent in building leaks is 
likely to follow a pattern very similar to the Darcy friction factor and Darcy-Weisbach equation, 
since they both result from the same fundamental physics described by the Navier-Stokes 
equations.  

In a first example, we can begin by allocating the leakage areas so that the total leakage at 50 Pa is 
about 1200 m3/h, and each of the five leak sizes accounts for 20% of the leakage.  This gives the 
following results. 
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Table 1: Equal Leakage Distribution, Flow @ 50 Pa = 1206 m3/h 

Leak Size 16 mm 7 mm 5 mm 2.2 mm 1.6 mm 
Leakage Area (mm2) 2950 5045 5572 7834 15590 

% of Total Leakage @50Pa 20.0% 20.0% 20.0% 20.0% 20.0% 

When the leakage from all leaks is equal at 50 Pa, a power law fit of a multi-point test yields the 
following: Qv = 117.4*Δp0.595.  However, our experience with real-world building leakage tests 
tells us that the exponent n is usually closer to 0.65.  So our leakage distribution should be 
adjusted to have more leakage from the smaller leaks in proportion to the larger ones, in order to 
better reflect our experience with real-world leakage. 

 

2.5 Comparing Three Different Distributions 
Next, we will modify the leakage areas until we have a distribution that gives us a coefficient n 
close 0.65.  To achieve this we progressively increase the leakage area as the leak size gets 
smaller, which results in the following proportions of leakage. 

Table 2: Leakage Distribution A, Flow @ 50 Pa = 1219 m3/h 

Leak Size 16 mm 7 mm 5 mm 2.2 mm 1.6 mm 
Leakage Area (mm2) 1875 3375 6075 10935 19683 

% of Total Leakage @50Pa 12.6% 13.2% 21.6% 27.7% 24.9% 

The Power Law fit is: Qv = 94.410*Δp0.653 

We can then plot the total leakage at pressures from 0.1 Pa up to 100 Pa.  We can assume 9 test 
pressures of 12, 18, 22, 28, 36, 42, 50, 56, and 64 Pa.  Figure 5 shows the leakage at all pressures 
in orange, and the test points in blue.  The blue dotted line is the power law fit of the test points.  It 
has an exponent of 0.653, which was the objective.  Notice that total leakage is very close to the 
power law fit at pressures near the test points, but it deviates markedly as pressures get further 
from the test pressures. 

 



 
 

 

Next, we consider whether a significantly different distribution of leaks could also give the same 
resulting flow and exponent.  Leakage Distribution B shows another possible distribution of leaks 
in which most of the leakage is 1.6 mm or 16mm with much less leakage in between.  By 
adjusting the leakage area of small and large leaks, a total leakage can be calculated which results 
in a power law fit that is almost identical to Leakage Distribution B. 

 

Table 3: Leakage Distribution B, Flow @ 50 Pa = 1217 m3/h 

Leak Size 16 mm 7 mm 5 mm 2.2 mm 1.6 mm 
Leakage Area (mm2) 7663 1120 1400 1750 27410 

% of Total Leakage @50Pa 51.4% 4.4% 5.0% 4.4% 34.8% 

The Power Law fit is: Qv = 94.401*Δp0.653 
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Just as with distribution A, the power law fit of Distribution B is very close to the calculated total 
leakage around the test pressures.  However in this case, the Total Leakage is greater than the 
power law predicts, whereas with Distribution A, the Total Leakage was less than the power law 
predicts.  So the “error” could be positive or negative.  

A third distribution of leaks was also created which also results in the same total leakage at 50Pa 
and the same exponent: 0.653.  In this case, most of the leakage was assumed to be from the 5 mm 
and 2.2 mm leaks, with very little from the smaller or larger leaks. 

 

Table 4: Leakage Distribution C, Flow @ 50 Pa = 1219 m3/h 

Leak Size 16 mm 7 mm 5 mm 2.2 mm 1.6 mm 
Leakage Area (mm2) 250 250 10764.05 23175 250 

% of Total Leakage @50Pa 1.7% 1.0% 39.0% 58.0% 0.3% 

The Power Law fit is: Qv = 94.403*Δp0.653 
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Like the others, distribution C deviates significantly from the power law fit model at lower 
pressures. 

 

3 RESULTS 
Now we return to the original question: how accurate is an extrapolation from leakage 
measurements taken at higher pressures to leakage occurring naturally at a few Pascals?  Figures 8 
shows a comparison of the results from Distributions A, B and C.  Here, the vertical axis is the 
percent deviation of the flow estimated using the power law fit from the calculated total leakage.  
This makes it easier to compare the three results and understand the percent “error” that might be 
implied by extrapolating a power law fit from the test pressures down to lower pressures.  At a 
pressure of 1 Pa, we have deviations of -19%, +26%, and +78% for distributions A, B, and C 
respectively. 
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4 Necessary Assumptions 
It is important to review the assumptions necessary for these results to be informative and useful.  
The first assumption is that real-world building leaks are of sizes that include both laminar and 
turbulent leaks.  This is almost certainly true since real-world power law fits of measured leakage 
do not have exponents close to 1.0 or 0.5, which would be the case if all building leaks were 
laminar or turbulent respectively.  Real world power law exponents are usually between 0.6 and 
0.75. 

The second assumption is that some leak sizes transition from laminar flow to turbulent flow as 
pressure increases within the pressure range of interest.  This is also almost certainly true since the 
width of real-world leaks is continuously variable and the width of the leaks will determine the 
Reynolds number in the leak. 

The third assumption is that in real-world building leaks, the relationship between pressure and 
flow changes in a way similar to that in round pipes.  Since the Darcy-Weisbach equation was 
developed to describe flow in round pipes, we must consider whether it can be applied to long, 
narrow leakage geometries.  This assumption is probably valid since the fundamental boundary 
layer physics that govern transitions from laminar to turbulent flow in round pipes are the same as 
those that govern flow through other geometries.  The relationship between pressure and flow is 
best understood by referring to Figure 3.  When viewed on a log-log plot, the change in the flow 
vs pressure appears as a straight line with a different slope as the flow changes from laminar to 
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turbulent.  If real-world leaks change slope in a similar way, then these results are useful 
irrespective of the accuracy of the calculated leakage flow rate.   

To look at it another way, we can use the 7mm wide leak as an example.  In our simulation, we 
calculated that a leak 7mm wide, having a total open area of 2500 mm2 has a leakage of 66 m3/hr 
at a building pressure of 10 Pa.  But for the purposes of this study, it doesn’t matter if the actual 
leakage from a leak this size is 33, 66, or 133  m3/hr.  What is important is only that the flow 
regime will transition from laminar through transitional flow to turbulent flow at pressures 
somewhere between 0.1 Pa and 100 Pa.  When this occurs, the slope of the line will change on the 
log-log plot and this will introduce error in the power law fit. 

5 Discussion and Conclusions 
These simulations can give us some idea of the shapes and inflections we might see in the error 
curves of a power law fit.  They can also show what order of magnitude the errors might be at 
various pressures.  They also seem to indicate that the true errors might be either positive or 
negative. 

What cannot be determined from these results is which of the three simulations is most similar to 
buildings in the real world.  Further study would be required to determine this. 

The well-known and widely used power-law fits accurately predict leakage near the test pressures.  
However, at much lower pressures the true leakage might be higher or lower than the power law 
fit predicts and the error associated with this extrapolation might be quite large. 
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